login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276696
Triangle read by rows, T(n,k) = T(n-1, k-1) + T(n-2, k) if k is odd, T(n-1, k-1) + T(n-1, k) if k is even, for k<=0<=n and n>=2 with T(0,0)=T(1,0)=T(1,1)=0 and T(n,k)=0 when k>n, k<0, or n<0.
0
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 5, 3, 1, 1, 3, 9, 8, 8, 3, 1, 1, 4, 12, 14, 16, 9, 4, 1, 1, 4, 16, 20, 30, 19, 13, 4, 1, 1, 5, 20, 30, 50, 39, 32, 14, 5, 1, 1, 5, 25, 40, 80, 69, 71, 36, 19, 5, 1, 1, 6, 30, 55, 120, 119, 140, 85, 55, 20, 6, 1
OFFSET
0,8
COMMENTS
This is the triangle frst(n,k) in the Ehrenborg and Readdy link. See Definition 3.1 and Table 1.
LINKS
Richard Ehrenborg and Margaret A. Readdy, The Gaussian coefficient revisited, arXiv:1609.03216 [math.CO], 2016.
EXAMPLE
Triangle starts:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 4, 2, 1;
1, 3, 6, 5, 3, 1;
1, 3, 9, 8, 8, 3, 1;
...
MATHEMATICA
T[n_, n_] = T[_, 0] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = If[OddQ[k], T[n-1, k-1] + T[n-2, k], T[n-1, k-1] + T[n-1, k]]; T[_, _] = 0;
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 28 2018 *)
PROG
(PARI) frst(n, k) = if ((k>n) || (n<0) || (k<0), 0, if (n<=2, 1, if (k==0, 1, if (k%2, frst(n-1, k-1) + frst(n-2, k), frst(n-1, k-1) + frst(n-1, k)))));
tf(nn) = for (n=0, nn, for (k=0, n, print1(frst(n, k), ", "); ); print(); );
CROSSREFS
Cf. A169623 (the triangle er).
Sequence in context: A262750 A075402 A373270 * A220777 A088855 A034851
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Sep 14 2016
STATUS
approved