Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Feb 06 2023 12:46:06
%S 1,2,2,1,1,2,3,3,3,4,4,4,4,3,2,1,1,2,3,4,5,5,5,5,5,6,6,6,6,6,6,5,4,3,
%T 2,1,1,2,3,4,5,6,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,7,6,5,4,3,2,1,1,2,3,4,
%U 5,6,7,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,9,8,7,6,5,4,3,2,1
%N First inverse function (numbers of rows) for pairing function A081344.
%H Boris Putievskiy, <a href="/A220603/b220603.txt">Rows n = 1..140 of triangle, flattened</a>
%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%F As a linear array, the sequence is a(n) = mod(t;2)*min{t; n - (t - 1)^2} + mod(t + 1; 2)*min{t; t^2 - n + 1}, where t=floor[sqrt(n-1)]+1.
%e The start of the sequence as triangle array T(n,k) read by rows, row number k contains 2k-1 numbers:
%e 1;
%e 2,2,1;
%e 1,2,3,3,3;
%e 4,4,4,4,3,2,1;
%e ...
%e If k is odd the row is 1,2,...,k,k...k (k times repetition "k" at the end of row).
%e If k is even the row is k,k,...k,k-1,k-2,...1 (k times repetition "k" at the start of row).
%t row[n_] := If[OddQ[n], Range[n-1]~Join~Table[n, {n}], Table[n, {n}]~Join~ Range[n-1, 1, -1]];
%t row /@ Range[10] // Flatten (* _Jean-François Alcover_, Nov 19 2019 *)
%o (Python)
%o t=int(math.sqrt(n-1))+1
%o i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1)
%Y Cf. A081344.
%K nonn,tabf
%O 1,2
%A _Boris Putievskiy_, Dec 16 2012