login
A220484
Triangle read by rows: T(j,k) is the total number of appearances of the smallest parts in the j-th partition of n, with partitions as nonincreasing lists of parts in lexicographic order.
0
1, 2, 1, 3, 1, 1, 4, 2, 1, 2, 1, 5, 3, 2, 1, 1, 1, 1, 6, 4, 3, 2, 2, 1, 1, 3, 1, 2, 1, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1
OFFSET
1,2
COMMENTS
The sum of row n equals spt(n) = A092269(n), the smallest part partition function.
EXAMPLE
For n = 5:
------------------------------------------
. number of
Partitions of 5 smallest parts
------------------------------------------
1 + 1 + 1 + 1 + 1 5
2 + 1 + 1 + 1 3
3 + 1 + 1 2
2 + 2 + 1 1
4 + 1 1
3 + 2 1
5 1
------------------------------------------
So row 5 is [5, 3, 2, 1, 1, 1, 1]. The sum of row 5 is 5+3+2+1+1+1+1 = spt(5) = A092269(n) = 14.
.
Written as an irregular triangle begins:
1;
2,1;
3,1,1;
4,2,1,2,1;
5,3,2,1,1,1,1;
6,4,3,2,2,1,1,3,1,2,1;
7,5,4,3,3,2,2,1,1,1,1,2,1,1,1;
8,6,5,4,4,3,3,2,2,2,2,1,1,1,1,4,2,1,1,1,2,1;
9,7,6,5,5,4,4,3,3,3,3,2,2,2,2,1,1,1,1,1,1,1,3,2,1,1,3,1,1,1;
CROSSREFS
Column 1 is A000027. Row n has length A000041(n). Row sums give A092269.
Sequence in context: A010766 A135841 A210992 * A174066 A089178 A187489
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Jan 20 2013
STATUS
approved