login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220442
a(n) = 3^n + 6^n + 9^n + 12^n.
1
4, 30, 270, 2700, 28674, 315900, 3564810, 40896900, 474714594, 5557298220, 65464673850, 774752404500, 9200707298514, 109548133495740, 1306873625950890, 15613382906014500, 186740100236842434, 2235305215228688460, 26773529476526331930, 320831460449198190900, 3845921314068458898354
OFFSET
0,1
LINKS
T. A. Gulliver, Sums of Powers of Integers Divisible by Three, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 38, 1895 - 1901.
FORMULA
a(n) = 3^n*(2^n + 3^n + 4^n + 1).
G.f.: -2*(15*x-2)*(45*x^2-15*x+1) / ((3*x-1)*(6*x-1)*(9*x-1)*(12*x-1)). - Colin Barker, Jul 22 2013
MATHEMATICA
Total/@Table[(3*Range[4])^n, {n, 0, 20}] (* or *) LinearRecurrence[ {30, -315, 1350, -1944}, {4, 30, 270, 2700}, 30] (* Harvey P. Dale, Jul 19 2014 *)
CoefficientList[Series[-2 (15 x - 2) (45 x^2 - 15 x + 1)/((3 x - 1) (6 x - 1) (9 x - 1) (12 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 22 2014 *)
PROG
(Python)
def a(n): return 3**n + 6**n + 9**n + 12**n
print([a(n) for n in range(21)]) # Michael S. Branicky, Apr 30 2021
CROSSREFS
Sequence in context: A330801 A052658 A340895 * A215698 A367872 A376326
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 22 2012
STATUS
approved