login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Sum of neighbor maps: log base 2 of the number of n X k binary arrays indicating the locations of corresponding elements equal to the sum mod 2 of their horizontal and vertical neighbors in a random 0..1 n X k array.
2

%I #6 Apr 20 2021 12:24:14

%S 1,1,1,3,4,3,4,4,4,4,4,8,9,8,4,6,9,12,12,9,6,7,12,12,12,12,12,7,7,12,

%T 18,20,20,18,12,7,9,16,21,24,23,24,21,16,9,10,17,22,28,30,30,28,22,17,

%U 10,10,20,27,32,31,36,31,32,27,20,10,12,20,30,32,39,42,42,39,32,30,20,12,13,24

%N T(n,k) = Sum of neighbor maps: log base 2 of the number of n X k binary arrays indicating the locations of corresponding elements equal to the sum mod 2 of their horizontal and vertical neighbors in a random 0..1 n X k array.

%C Table starts

%C ..1..1..3..4..4..6..7..7..9..10.10..12.13.13.15.16.16.18.19.19

%C ..1..4..4..8..9.12.12.16.17..20.20..24.25.28.28.32.33.36.36

%C ..3..4..9.12.12.18.21.22.27..30.30..36.39.40.45.48.48.54

%C ..4..8.12.12.20.24.28.32.32..40.44..48.52.52.60.64.68

%C ..4..9.12.20.23.30.31.39.44..50.51..60.64.69.71.80

%C ..6.12.18.24.30.36.42.42.54..60.66..72.78.84.90

%C ..7.12.21.28.31.42.49.54.63..70.70..84.91.96

%C ..7.16.22.32.39.42.54.64.71..80.86..96.97

%C ..9.17.27.32.44.54.63.71.73..90.98.108

%C .10.20.30.40.50.60.70.80.90.100

%C .10.20.30.44.51.66.70.86.98

%C .12.24.36.48.60.72.84.96

%H R. H. Hardin, <a href="/A220196/b220196.txt">Table of n, a(n) for n = 1..199</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +a(n-3) -a(n-4) increment period 3: 0 2 1

%F k=2: a(n) = a(n-1) +a(n-4) -a(n-5) increment period 4: 3 0 4 1

%F k=3: a(n) = a(n-1) +a(n-6) -a(n-7) increment period 6: 1 5 3 0 6 3

%F k=4: a(n) = a(n-1) +a(n-5) -a(n-6) increment period 5: 4 4 0 8 4

%F k=5: a(n) = a(n-3) +a(n-8) -a(n-11) increment period 24: 5 3 8 3 7 1 8 5 6 1 9 4 5 2 9 3 7 2 7 5 6 0 10 4

%F k=6: a(n) = a(n-1) +a(n-9) -a(n-10) increment period 9: 6 6 6 6 6 6 0 12 6

%F k=7: a(n) = a(n-1) +a(n-12) -a(n-13) increment period 12: 5 9 7 3 11 7 5 9 7 0 14 7

%e Some solutions for n=3 k=4

%e ..0..0..0..0....0..0..0..0....1..1..1..0....0..1..0..0....0..1..0..0

%e ..0..1..0..0....0..0..0..0....1..0..0..1....0..0..0..1....0..1..1..1

%e ..0..1..0..0....0..0..0..1....1..0..1..1....0..0..0..0....0..1..0..0

%Y Column 1 is A117571.

%K nonn,tabl

%O 1,4

%A _R. H. Hardin_ Dec 07 2012