login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A219655
Greatest inverse of A219652; a(n) = maximal i such that A219652(i) = n.
10
0, 1, 3, 5, 7, 11, 15, 19, 23, 25, 29, 33, 37, 41, 47, 51, 55, 59, 65, 71, 77, 83, 89, 95, 101, 107, 115, 119, 121, 125, 129, 133, 137, 143, 147, 151, 155, 161, 167, 173, 179, 185, 191, 197, 203, 211, 217, 225, 233, 239, 243, 247, 251, 257, 263, 269, 275, 281
OFFSET
0,3
LINKS
FORMULA
a(n) = A219653(n) + A219654(n) - 1.
PROG
(Scheme with Antti Karttunen's Intseq-library, three different variants):
(define A219655 (PARTIALSUMS 1 0 (compose-funs A219654 1+)))
(define A219655v2 (compose-funs -1+ (LEAST-I-WITH-FUN-I-EQ-N 0 0 A219652) 1+)) ;; Slow!
(define (A219655v3 n) (+ (A219653 n) (A219654 n) -1))
CROSSREFS
Cf. A219653 for the least inverse. A219654 gives the first differences.
This sequence is based on factorial number system: A007623. Analogous sequence for binary system: A173601, for Zeckendorf expansion: A219645.
Sequence in context: A238738 A059748 A122124 * A335039 A007665 A208994
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 25 2012
STATUS
approved