login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218863
Smallest prime p such that n*p is greater than the greatest prime factors of p^n - 1 and of p^n + 1.
2
3, 3, 37, 2383, 69011, 4027
OFFSET
1,1
COMMENTS
a(7) > 4000000. - T. D. Noe, Nov 08 2012
EXAMPLE
4027^6 - 1 = 2^3*3^2*7*11*13*19*53*61*229*709*1759*3373,
4027^6 + 1 = 2*5*37*41*1069*1381*1993*9733*9817,
and 6*4027 > 3373 and 6*4027 > 9817,
3^1 - 1 = 2, 3^1 + 1 = 2^2 and 3 > 2.
MAPLE
A218863 := proc(n)
p := 2 ;
for i from 1 do
max(op(numtheory[factorset](p^n-1))) ;
if n*p > % then
max(op(numtheory[factorset](p^n+1))) ;
if n*p > % then
return p;
end if;
end if;
p := nextprime(p) ;
end do:
end proc: # R. J. Mathar, Nov 07 2012
MATHEMATICA
Table[p = 2; While[n*p <= FactorInteger[p^n - 1][[-1, 1]] || n*p <= FactorInteger[p^n + 1][[-1, 1]], p = NextPrime[p]]; p, {n, 6}] (* T. D. Noe, Nov 07 2012 *)
CROSSREFS
Sequence in context: A206477 A372022 A219210 * A082394 A308645 A086889
KEYWORD
nonn
AUTHOR
Robin Garcia, Nov 07 2012
STATUS
approved