OFFSET
0,3
COMMENTS
Also number of partitions of n in which each part, with the possible exception of the largest, occurs at least 4 times.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: 1 + Sum_{j>=1} x^j/(1-x^j) * Product_{i=1..j-1} (1+x^(4*i)/(1-x^i)).
log(a(n)) ~ sqrt((2*Pi^2/3 + 4*c)*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-4*x)) dx = -0.9030055506558938921393786530232872470622617736... - Vaclav Kotesovec, Jan 28 2022
EXAMPLE
a(5) = 2: [1,1,1,1,1], [5].
a(6) = 5: [1,1,1,1,1,1], [2,2,2], [3,3], [1,5], [6].
a(7) = 4: [1,1,1,1,1,1,1], [1,1,5], [1,6], [7].
a(8) = 8: [1,1,1,1,1,1,1,1], [2,2,2,2], [4,4], [1,1,1,5], [1,1,6], [2,6], [1,7], [8].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-4), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i j, i - k, k], {j, 1, n/i}]]];
a[n_] := b[n, n, 4];
a /@ Range[0, 70] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 04 2012
STATUS
approved