login
A218699
Number of partitions of n in which any two distinct parts differ by at least 4.
2
1, 1, 2, 2, 3, 2, 5, 4, 8, 8, 12, 12, 19, 18, 24, 26, 36, 36, 48, 50, 70, 71, 92, 96, 129, 133, 168, 177, 225, 233, 294, 307, 382, 401, 488, 518, 635, 668, 803, 855, 1027, 1089, 1298, 1381, 1638, 1745, 2047, 2184, 2569, 2734, 3181, 3404, 3953, 4213, 4863, 5203
OFFSET
0,3
COMMENTS
Also number of partitions of n in which each part, with the possible exception of the largest, occurs at least 4 times.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: 1 + Sum_{j>=1} x^j/(1-x^j) * Product_{i=1..j-1} (1+x^(4*i)/(1-x^i)).
log(a(n)) ~ sqrt((2*Pi^2/3 + 4*c)*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-4*x)) dx = -0.9030055506558938921393786530232872470622617736... - Vaclav Kotesovec, Jan 28 2022
EXAMPLE
a(5) = 2: [1,1,1,1,1], [5].
a(6) = 5: [1,1,1,1,1,1], [2,2,2], [3,3], [1,5], [6].
a(7) = 4: [1,1,1,1,1,1,1], [1,1,5], [1,6], [7].
a(8) = 8: [1,1,1,1,1,1,1,1], [2,2,2,2], [4,4], [1,1,1,5], [1,1,6], [2,6], [1,7], [8].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-4), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i j, i - k, k], {j, 1, n/i}]]];
a[n_] := b[n, n, 4];
a /@ Range[0, 70] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A218698.
Cf. A160974.
Sequence in context: A330545 A113298 A058705 * A090794 A254858 A050323
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 04 2012
STATUS
approved