login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218309
E.g.f. A(x) satisfies A( x/(exp(3*x)*cosh(3*x)) ) = exp(4*x)*cosh(4*x).
10
1, 4, 56, 1264, 40640, 1711744, 89533184, 5607463936, 409621790720, 34218229227520, 3219000547131392, 336858779869020160, 38823224436435845120, 4886982191317154529280, 667188807538423365632000, 98200163047169655115350016, 15501781660715229538766815232
OFFSET
0,2
COMMENTS
More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.
FORMULA
E.g.f.: A(x) = Sum_{n>=0} 4*(3*n+4)^(n-1) * cosh((3*n+4)*x) * x^n/n!.
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( 4*x - 4/3 * LambertW(-3*x * exp(3*x)) ).
a(n) = 2 * Sum_{k=0..n} (3*k+4)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 2 * Sum_{k>=0} (3*k+4)^(k-1) * x^k/(1 - (3*k+4)*x)^(k+1). (End)
EXAMPLE
E.g.f.: A(x) = 1 + 4*x + 56*x^2/2! + 1264*x^3/3! + 40640*x^4/4! + 1711744*x^5/5! +...
where
A(x) = cosh(2*x) + 4*5^0*cosh(5*x)*x + 4*8^1*cosh(8*x)*x^2/2! + 4*11^2*cosh(11*x)*x^3/3! + 4*14^3*cosh(14*x)*x^4/4! + 4*17^4*cosh(17*x)*x^5/5! +...
PROG
(PARI) {a(n)=local(Egf=1, X=x+x*O(x^n), R=serreverse(x/(exp(3*X)*cosh(3*X)))); Egf=exp(4*R)*cosh(4*R); n!*polcoeff(Egf, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Formula derived from a LambertW identity: */
{a(n)=local(Egf=1, X=x+x*O(x^n)); Egf=sum(k=0, n, 4*(3*k+4)^(k-1)*cosh((3*k+4)*X)*x^k/k!); n!*polcoeff(Egf, n)}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 25 2012
STATUS
approved