OFFSET
0,3
COMMENTS
More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..300
FORMULA
E.g.f.: A(x) = Sum_{n>=0} (2*n+1)^(n-1) * cosh((2*n+1)*x) * x^n/n!.
a(n) ~ c * 2^n * n^(n-1) / (exp(n) * (LambertW(exp(-1)))^n), where c = sqrt(1 + LambertW(exp(-1)))/(4*sqrt(LambertW(exp(-1)))) = 0.535672560704567808218663129282561449... . - Vaclav Kotesovec, Jul 13 2014, updated Jun 10 2019
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( x - 1/2 * LambertW(-2*x * exp(2*x)) ).
a(n) = 1/2 * Sum_{k=0..n} (2*k+1)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 1/2 * Sum_{k>=0} (2*k+1)^(k-1) * x^k/(1 - (2*k+1)*x)^(k+1). (End)
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 76*x^3/3! + 1480*x^4/4! + 39056*x^5/5! +...
where
A(x) = cosh(x) + 3^0*cosh(3*x)*x + 5^1*cosh(5*x)*x^2/2! + 7^2*cosh(7*x)*x^3/3! + 9^3*cosh(9*x)*x^4/4! + 11^4*cosh(11*x)*x^5/5! +...
PROG
(PARI) {a(n)=local(Egf=1, X=x+x*O(x^n), R=serreverse(x/(exp(2*X)*cosh(2*X)))); Egf=exp(R)*cosh(R); n!*polcoeff(Egf, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Formula derived from a LambertW identity: */
{a(n)=local(Egf=1, X=x+x*O(x^n)); Egf=sum(k=0, n, (2*k+1)^(k-1)*cosh((2*k+1)*X)*x^k/k!); n!*polcoeff(Egf, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 25 2012
STATUS
approved