

A218234


Infinitesimal generator for padded Pascal matrix A097805 (as lower triangular matrices).


3



0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,9


COMMENTS

Matrix T begins
0;
0,0;
0,1,0;
0,0,2,0;
0,0,0,3,0;
0,0,0,0,4,0;
Let M(t) = exp(t*T) = limit [1 + t*T/n]^n as n tends to infinity.
Then M(1) = the lower triangular padded Pascal matrix A097805, with inverse M(1).
Given a polynomial sequence p_n(x) with p_0(x)=1 and the lowering and raising operators L and R defined by L P_n(x) = n * P_(n1)(x) and R P_n(x) = P_(n+1)(x), the matrix T represents the action of R^2*L in the p_n(x) basis. For p_n(x) = x^n, L = D = d/dx and R = x. For p_n(x) = x^n/n!, L = DxD and R = D^(1).
See A132440 for an analog and more general discussion.


LINKS

Table of n, a(n) for n=0..79.
P. Blasiak and P. Flajolet, Combinatorial models of creationannihilation
T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras
T. Copeland, Mathemagical Forests
T. Copeland, Addendum to Mathemagical Forests
G. Dattoli, B. Germano, M. Martinelli, and P. Ricci, Touchard like polynomials and generalized Stirling polynomials
W. Lang, Combinatorial interpretation of generalized Stirling numbers


FORMULA

The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.s A(x) and B(x), or e.g.f.s EA(x) and EB(x):
1) b(0) = 0, b(1) = 0, b(n) = (n1) * a(n1),
2) B(x) = x^2D A(x)= x (xDx)(1/x)A(x) = x^2 * Lag(1,:xD:) A(x)/x , or
3) EB(x) = D^(1)xD EA(x),
where D is the derivative w.r.t. x, (D^(1)x^j/j!) = x^(j+1)/(j+1)!, (:xD:)^j = x^j*D^j, and Lag(n,x) are the Laguerre polynomials A021009.
So the exponentiated operator can be characterized as
4) exp(t*T) A(x) = exp(t*x^2D) A(x) = x exp(t*xDx)(1/x)A(x)
= x [sum(n=0,1,...) (t*x)^n * Lag(n,:xD:)] A(x)/x
= x [exp{[t*u/(1t*u)]*:xD:} / (1t*u) ] A(x)/x (eval. at u=x)
= A[x/(1t*x)], a special Moebius or linear fractional trf.,
5) exp(t*T) EA(x) = D^(1) exp(t*x)D EA(x), a shifted Euler trf.
for an e.g.f., or
6) [exp(t*T) * a]_n = [M(t) * a]_n
= [sum(k=0,...,n1) binomial(n1,k)* t^(n1k) * a(k+1)] with [M(t) * a]_0 = a_0
For generalizations and more on the operator x^2D, see A132440 and the references therein and above, and A094638.


MATHEMATICA

Table[PadLeft[{n1, 0}, n+1], {n, 0, 12}] // Flatten (* JeanFrançois Alcover, Apr 30 2014 *)


CROSSREFS

Sequence in context: A112167 A230571 A037213 * A092197 A213618 A083804
Adjacent sequences: A218231 A218232 A218233 * A218235 A218236 A218237


KEYWORD

easy,tabl,nonn


AUTHOR

Tom Copeland, Oct 24 2012


STATUS

approved



