login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218222
G.f. A(x) satisfies: A(x) = x + x*[d/dx A(x)^2].
2
1, 2, 12, 112, 1360, 19872, 335104, 6359040, 133560576, 3069007360, 76493880320, 2054400577536, 59136549994496, 1816392567062528, 59305340822814720, 2051451257317490688, 74958908119819812864, 2885480280276224311296, 116731741304854533111808
OFFSET
1,2
LINKS
FORMULA
a(n) = 2^(n-1)*A088716(n-1) for n>=1, where g.f. F(x) of A088716 satisfies: F(x) = 1 + x*F(x)*d/dx[x*F(x)].
a(n) = n*A112915(n-1) for n>=1.
G.f.: x*d/dx x*G(x), where g.f. G(x) of A112915 satisfies: G(x) = 1 + x*(d/dx[x*G(x)])^2.
a(n) ~ c * n * 2^(n-1) * n!, where c = A238223 = 0.21795078944715106549... - Vaclav Kotesovec, Aug 24 2017
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 12*x^3 + 112*x^4 + 1360*x^5 + 19872*x^6 +...
Related series:
A(x)^2 = x^2 + 4*x^3 + 28*x^4 + 272*x^5 + 3312*x^6 + 47872*x^7 + 794880*x^8 + 14840064*x^9 +...+ A112915(n-1)*x^n +...
d/dx A(x)^2 = 2*x + 12*x^2 + 112*x^3 + 1360*x^4 + 19872*x^5 +...
MAPLE
a:= proc(n) option remember; `if`(n<2, 1,
n*add(a(i)*a(n-i), i=1..n-1))
end:
seq(a(n), n=1..20); # Alois P. Heinz, Nov 05 2020
MATHEMATICA
a[n_] := a[n] = If[n<2, 1, n*Sum[a[i]*a[n-i], {i, 1, n-1}]];
Array[a, 20] (* Jean-François Alcover, Dec 18 2020, after Maple *)
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+x*deriv(A^2+x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2013
STATUS
approved