

A218167


a(n) is the smallest positive integer k such that k^512 + 1 == 0 mod p(n) where p(n) are the nth prime of the form 1 + 1024*b.


0



49, 7, 84, 159, 5, 31, 95, 143, 40, 35, 29, 9, 21, 156, 431, 53, 231, 230, 6, 329, 82, 30, 223, 45, 181, 275, 206, 454, 1130, 204, 216, 38, 245, 34, 71, 1080, 561, 338, 181, 119, 238, 525, 333, 95, 431, 855, 367, 430, 554, 50, 1331, 175, 16, 728, 939, 692, 889
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



MATHEMATICA

aa = {}; Do[p = Prime[n]; If[Mod[p, 1024] == 1, k = 1; While[ ! Mod[k^512 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 40000}]; aa


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



