login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218103
Number of transitive reflexive early confluent binary relations R on n+3 labeled elements with max_{x}(|{y : xRy}|) = n.
2
0, 1, 310, 12075, 267715, 5287506, 105494886, 2185028130, 47488375440, 1087116745385, 26234041133443, 666937354457829, 17839235553096685, 501241620987647540, 14769149279798467900, 455566464561064320948, 14685947990441112405726, 493969048893703131221475
OFFSET
0,3
COMMENTS
R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
LINKS
FORMULA
a(n) = A135313(n+3,n).
a(n) ~ n! * n^6 / (96 * log(2)^(n+4)). - Vaclav Kotesovec, Nov 20 2021
Conjecture: For fixed k>=0, A135313(n+k,n) ~ n! * n^(2*k) / (2^(k+1) * k! * log(2)^(n+k+1)). - Vaclav Kotesovec, Nov 20 2021
MAPLE
t:= proc(k) option remember; `if`(k<0, 0,
unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
end:
tt:= proc(k) option remember; unapply((t(k)-t(k-1))(x), x) end:
T:= proc(n, k) option remember;
coeff(series(tt(k)(x), x, n+1), x, n) *n!
end:
a:= n-> T(n+3, n):
seq(a(n), n=0..20);
MATHEMATICA
m = 3; f[0, _] = 1; f[k_, x_] := f[k, x] = Exp[Sum[x^m/m!*f[k-m, x], {m, 1, k}]]; (* t = A135302 *) t[0, 0] = 1; t[_, 0] = 0; t[n_, k_] := t[n, k] = SeriesCoefficient[f[k, x], {x, 0, n}]*n!; a[0] = 0; a[n_] := t[n+m, n]-t[n+m, n-1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 14 2014 *)
CROSSREFS
Sequence in context: A206233 A254972 A237697 * A289304 A281568 A084876
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2012
STATUS
approved