%I #16 Dec 29 2021 16:42:23
%S 541,11301,239379,5287506,124878033,3151808478,84934607175,
%T 2440299822081,74564772630777,2416548374532292,82847673438018762,
%U 2996998457878842144,114123931204449050115,4564365783126801549858,191334572138628994076241,8390237730288860299836005
%N Number of transitive reflexive early confluent binary relations R on n labeled elements with max_{x}(|{y : xRy}|) = 5.
%C R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
%D A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
%H Alois P. Heinz, <a href="/A218095/b218095.txt">Table of n, a(n) for n = 5..200</a>
%F E.g.f.: t_5(x)-t_4(x), with t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)) if k>=0 and t_k(x) = 0 else.
%F a(n) = A210913(n) - A210912(n).
%p t:= proc(k) option remember; `if`(k<0, 0,
%p unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
%p end:
%p egf:= t(5)(x)-t(4)(x):
%p a:= n-> n!* coeff(series(egf, x, n+1), x, n):
%p seq(a(n), n=5..20);
%t m = 5; t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]] ; egf = t[m][x]-t[m-1][x]; a[n_] := n!*Coefficient[Series[egf, {x, 0, n+1}], x, n]; Table[a[n], {n, m, 20}] (* _Jean-François Alcover_, Feb 14 2014, after Maple *)
%Y Column k=5 of A135313.
%K nonn
%O 5,1
%A _Alois P. Heinz_, Oct 20 2012