login
A218095
Number of transitive reflexive early confluent binary relations R on n labeled elements with max_{x}(|{y : xRy}|) = 5.
2
541, 11301, 239379, 5287506, 124878033, 3151808478, 84934607175, 2440299822081, 74564772630777, 2416548374532292, 82847673438018762, 2996998457878842144, 114123931204449050115, 4564365783126801549858, 191334572138628994076241, 8390237730288860299836005
OFFSET
5,1
COMMENTS
R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
REFERENCES
A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
LINKS
FORMULA
E.g.f.: t_5(x)-t_4(x), with t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)) if k>=0 and t_k(x) = 0 else.
a(n) = A210913(n) - A210912(n).
MAPLE
t:= proc(k) option remember; `if`(k<0, 0,
unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
end:
egf:= t(5)(x)-t(4)(x):
a:= n-> n!* coeff(series(egf, x, n+1), x, n):
seq(a(n), n=5..20);
MATHEMATICA
m = 5; t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]] ; egf = t[m][x]-t[m-1][x]; a[n_] := n!*Coefficient[Series[egf, {x, 0, n+1}], x, n]; Table[a[n], {n, m, 20}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
CROSSREFS
Column k=5 of A135313.
Sequence in context: A129932 A226800 A320619 * A293582 A331642 A263065
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2012
STATUS
approved