login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217946
4^n*(n+1)*(8*n^2+32*n+33)*P(3/2,n)/(3*P(4,n)) where P(a,n) is the Pochhammer rising factorial.
1
11, 73, 387, 1876, 8670, 38907, 171171, 742456, 3186378, 13562770, 57352526, 241234488, 1010195420, 4214583135, 17527709475, 72695369520, 300782736210, 1241908383870, 5118246664410, 21058891783800, 86518038936420, 354975217564110, 1454668818567822, 5954594437631376, 24350248227272100, 99484144007729572
OFFSET
0,1
LINKS
Ping Sun, Proof of two conjectures of Petkovsek and Wilf on Gessel walks Discrete Math. 312 (2012), no. 24, 3649--3655. MR2979494. See Th. 1.1, case 3.
FORMULA
From Robert Israel, Mar 28 2018: (Start)
(n+1)^2*(n+4)*(8*n^2+32*n+33)*a(n+1) = 2*(2*n+3)*(n+2)*(8*n^2+48*n+73)*a(n).
G.f.: (3-x)/(2*x^3) - (3-19*x+24*x^2-16*x^3)/(2*(1-4*x)^(3/2)*x^3). (End)
MAPLE
f:= n -> 4^n*(n+1)*(8*n^2+32*n+33)*pochhammer(3/2, n)/(3*pochhammer(4, n)):
map(f, [$0..40]); # Robert Israel, Mar 28 2018
CROSSREFS
Sequence in context: A142015 A123039 A226034 * A163775 A092244 A342830
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 07 2012
STATUS
approved