This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217902 O.g.f.: Sum_{n>=0} 3*n^n*(n+3)^(n-1) * exp(-n*(n+3)*x) * x^n / n!. 9
 1, 3, 18, 210, 3696, 86436, 2521800, 88274640, 3608360064, 168822613872, 8901871248480, 522534101560224, 33804242536287744, 2390169742849449216, 183412961210465667072, 15183107016739655860224, 1348837954231568133427200, 128012762381954718934183680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare the g.f. to the LambertW identity: 1 = Sum_{n>=0} 3*(n+3)^(n-1) * exp(-(n+3)*x) * x^n/n!. LINKS G. C. Greubel, Table of n, a(n) for n = 0..250 FORMULA a(n) = 1/n! * Sum_{k=0..n} 3*(-1)^(n-k)*binomial(n,k) * k^n * (k+3)^(n-1). a(n) = 1/n! * [x^n] Sum_{k>=0} 3*k^k*(k+3)^(k-1)*x^k / (1 + k*(k+3)*x)^(k+1). a(n) = [x^n] 1 + 3*x*(1+3*x)^(n-1) / Product_{k=1..n} (1-k*x). a(n) = [x^n] 1 + 3*x*(1-3*x)^(n-1) / Product_{k=1..n} (1-(k+3)*x). a(n) ~ 3 * 2^(2*n) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+3/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014 EXAMPLE O.g.f.: A(x) = 1 + 3*x + 18*x^2 + 210*x^3 + 3696*x^4 + 86436*x^5 + 2521800*x^6 +... where A(x) = 1 + 3*1^1*4^0*x*exp(-1*4*x) + 3*2^2*5^1*exp(-2*5*x)*x^2/2! + 3*3^3*6^2*exp(-3*6*x)*x^3/3! + 3*4^4*7^3*exp(-4*7*x)*x^4/4! + 3*5^5*8^4*exp(-5*8*x)*x^5/5! +... simplifies to a power series in x with integer coefficients. MATHEMATICA Flatten[{1, Table[Sum[Binomial[n-1, j]*3^(n-j)*StirlingS2[n+j, n], {j, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, May 22 2014 *) PROG (PARI) {a(n)=polcoeff(sum(m=0, n, 3*m^m*(m+3)^(m-1)*x^m*exp(-m*(m+3)*x+x*O(x^n))/m!), n)} (PARI) {a(n)=(1/n!)*polcoeff(sum(k=0, n, 3*k^k*(k+3)^(k-1)*x^k/(1+k*(k+3)*x +x*O(x^n))^(k+1)), n)} (PARI) {a(n)=1/n!*sum(k=0, n, 3*(-1)^(n-k)*binomial(n, k)*k^n*(k+3)^(n-1))} (PARI) {a(n)=polcoeff(1+3*x*(1+3*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)} (PARI) {a(n)=polcoeff(1+3*x*(1-3*x)^n/prod(k=0, n, 1-(k+3)*x +x*O(x^n)), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A217899, A217900, A217901, A217903, A217904, A217905, A217910. Sequence in context: A135077 A157538 A024488 * A183241 A163883 A319580 Adjacent sequences:  A217899 A217900 A217901 * A217903 A217904 A217905 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 14 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)