Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 19 2014 08:03:05
%S 1,1,2,8,32,122,462,1758,6718,25750,98956,381196,1471678,5693146,
%T 22064296,85655812,333035302,1296684130,5055195944,19731318068,
%U 77098776372,301561031472,1180608808044,4626045139116,18140934734434,71191952221114,279576978531644
%N G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-3*x)^k.
%C Radius of convergence of g.f. A(x) is |x| < 1/4.
%C More generally, given
%C A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-t*x)^k then
%C A(x) = (1-t*x) / sqrt( (1-(t+1)*x)^2*(1+x^2) + (2*t-3)*x^2 - 2*t*(t-1)*x^3 ).
%H Vincenzo Librandi, <a href="/A217665/b217665.txt">Table of n, a(n) for n = 0..200</a>
%F G.f.: (1-3*x) / sqrt(1 - 8*x + 20*x^2 - 20*x^3 + 16*x^4).
%F G.f.: (1-3*x) / sqrt( (1-4*x)*(1 - 4*x + 4*x^2 - 4*x^3) ).
%F a(n) ~ 4^n / (sqrt(3*Pi*n)). - _Vaclav Kotesovec_, Feb 17 2014
%e G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 32*x^4 + 122*x^5 + 462*x^6 + 1758*x^7 +...
%e where the g.f. equals the series:
%e A(x) = 1 +
%e x*(1 + x/(1-3*x)) +
%e x^2*(1 + 2^2*x/(1-3*x) + x^2/(1-3*x)^2) +
%e x^3*(1 + 3^2*x/(1-3*x) + 3^2*x^2/(1-3*x)^2 + x^3/(1-3*x)^3) +
%e x^4*(1 + 4^2*x/(1-3*x) + 6^2*x^2/(1-3*x)^2 + 4^2*x^3/(1-3*x)^3 + x^4/(1-3*x)^4) +
%e x^5*(1 + 5^2*x/(1-3*x) + 10^2*x^2/(1-3*x)^2 + 10^2*x^3/(1-3*x)^3 + 5^2*x^4/(1-3*x)^4 + x^5/(1-3*x)^5) +...
%t CoefficientList[Series[(1-3*x)/Sqrt[(1-4*x)*(1 - 4*x + 4*x^2 - 4*x^3)], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 17 2014 *)
%o (PARI) {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k/(1-3*x +x*O(x^n))^k )), n)}
%o for(n=0,40,print1(a(n),", "))
%Y Cf. A217661, A217664, A217666.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Oct 10 2012