login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217665
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-3*x)^k.
4
1, 1, 2, 8, 32, 122, 462, 1758, 6718, 25750, 98956, 381196, 1471678, 5693146, 22064296, 85655812, 333035302, 1296684130, 5055195944, 19731318068, 77098776372, 301561031472, 1180608808044, 4626045139116, 18140934734434, 71191952221114, 279576978531644
OFFSET
0,3
COMMENTS
Radius of convergence of g.f. A(x) is |x| < 1/4.
More generally, given
A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-t*x)^k then
A(x) = (1-t*x) / sqrt( (1-(t+1)*x)^2*(1+x^2) + (2*t-3)*x^2 - 2*t*(t-1)*x^3 ).
LINKS
FORMULA
G.f.: (1-3*x) / sqrt(1 - 8*x + 20*x^2 - 20*x^3 + 16*x^4).
G.f.: (1-3*x) / sqrt( (1-4*x)*(1 - 4*x + 4*x^2 - 4*x^3) ).
a(n) ~ 4^n / (sqrt(3*Pi*n)). - Vaclav Kotesovec, Feb 17 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 32*x^4 + 122*x^5 + 462*x^6 + 1758*x^7 +...
where the g.f. equals the series:
A(x) = 1 +
x*(1 + x/(1-3*x)) +
x^2*(1 + 2^2*x/(1-3*x) + x^2/(1-3*x)^2) +
x^3*(1 + 3^2*x/(1-3*x) + 3^2*x^2/(1-3*x)^2 + x^3/(1-3*x)^3) +
x^4*(1 + 4^2*x/(1-3*x) + 6^2*x^2/(1-3*x)^2 + 4^2*x^3/(1-3*x)^3 + x^4/(1-3*x)^4) +
x^5*(1 + 5^2*x/(1-3*x) + 10^2*x^2/(1-3*x)^2 + 10^2*x^3/(1-3*x)^3 + 5^2*x^4/(1-3*x)^4 + x^5/(1-3*x)^5) +...
MATHEMATICA
CoefficientList[Series[(1-3*x)/Sqrt[(1-4*x)*(1 - 4*x + 4*x^2 - 4*x^3)], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 17 2014 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k/(1-3*x +x*O(x^n))^k )), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 10 2012
STATUS
approved