Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Dec 28 2022 05:43:48
%S 3,2,3,2,3,4,5,3,11,2,3,2,3,2,5,3,3,16,3,2,15,2,5,2,3,8,5,3,11,2,3,2,
%T 3,2,5,8,3,6,3,2,13,2,13,2,3,10,11,5,11,4,3,4,3,9,13,4,3,7,3,4,13,4,5,
%U 7,3,4,5,3,11,4,5,4,7,3,5,3,7,6,5,3,17,3
%N a(n) = A217578(n)/n.
%C Inspired by Problem 300 in Mathematical Excalibur, Vol. 13, No. 1, February-April, 2008.
%H Michel Marcus, <a href="/A217618/b217618.txt">Table of n, a(n) for n = 1..1000</a>
%H Kin Y. Li, <a href="http://www.math.ust.hk/excalibur/v13_n1.pdf">Problem 300</a>, Mathematical Excalibur, Vol. 13, No. 1, February-April, 2008.
%e For n=5, odd, 5*2=10, 5*3=15, so 3 is the smallest k such that all digits of 5*k are odd.
%e For n=8, even, 8*2=16, 8*3=24, so 3 is the smallest k such that all digits of 8*k are even.
%t Table[k = 2; While[d = IntegerDigits[k*n]; If[OddQ[n], done = And @@ OddQ[d], done = And @@ EvenQ[d]]; ! done, k++]; k, {n, 100}] (* _T. D. Noe_, Oct 10 2012 *)
%Y Cf. A217578.
%K nonn,base
%O 1,1
%A _Michel Marcus_, Oct 09 2012