login
A217607
Smallest k > 1 such that n divides binomial(n,k).
1
2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2
OFFSET
3,1
LINKS
EXAMPLE
a(6) = 5 because 6 divides binomial(6,5) = 6 and 6 does not divide binomial(6,k) for 1 < k < 5.
MAPLE
with(numtheory):for n from 3 to 100 do:ii:=0: for k from 2 to n while(ii=0) do:z:=binomial(n, k):if irem(z, n)=0 then ii:=1:printf(`%d, `, k):else fi:od:od:
MATHEMATICA
Table[k = 2; While[Mod[Binomial[n, k], n] > 0, k++]; k, {n, 3, 100}]
PROG
(PARI) A217607(n) = for(k=2, oo, if(!(binomial(n, k)%n), return(k))); \\ Antti Karttunen, May 24 2021
CROSSREFS
Sequence in context: A112763 A093476 A262597 * A066727 A076606 A056927
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 08 2012
STATUS
approved