login
A217466
Primes p such that 2^p == 2 (mod p*(p+1)).
4
5, 13, 29, 37, 61, 73, 157, 181, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1289, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061
OFFSET
1,1
COMMENTS
Primes in A216822.
MATHEMATICA
Select[Prime[Range[500]], PowerMod[2, #, #(#+1)]==2&] (* Harvey P. Dale, Mar 25 2019 *)
PROG
(PARI) for(n=1, 10000, if((2^n)%(n*(n+1))==2&&isprime(n), printf(n", ")))
(Python)
from sympy import primerange
A217466_list = [p for p in primerange(1, 10**6) if pow(2, p, p*(p+1)) == 2] # Chai Wah Wu, Mar 25 2021
CROSSREFS
Cf. A216822.
Sequence in context: A294919 A213050 A216822 * A078598 A155054 A158756
KEYWORD
nonn
AUTHOR
V. Raman, Oct 04 2012
STATUS
approved