Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Aug 26 2021 08:54:15
%S 18329,1913,1063,109,932839,85061,29729989,5653759,1958731,20891539,
%T 35008723,28265837,2,3,6238777,276624683,92343187,24205651,49598321,
%U 17722981,46741657,219329923,297614029,106791577,621528749,217893821,113824657,122670287,81263857
%N Least prime p such that all ten base-10 digits have prime counts in (p^prime(n))*(q^prime(n+1)), where q is the next prime after p.
%C Motivation for this sequence stems from the coincidence that (2^41)*(3^43) and (3^43)*(5^47) give prime counts for their digits.
%e (18329^2)*(18341^3) = 2072748335390985614861 has digit counts [2,2,2,3,2,2,2,2,3,2], all primes, and replacing the pair (18329,18341) with a smaller pair fails this criterion. In particular, (3733^2)*(3739^3) = 728420861672094091 has digit counts [3,2,3,0,2,0,2,2,2,2], not all prime.
%t Table[p=2;While[!And@@PrimeQ[DigitCount[(p^Prime@n)*(NextPrime@p^Prime[n+1])]],p=NextPrime@p];p,{n,6}] (* _Giorgos Kalogeropoulos_, Aug 18 2021 *)
%o (Python)
%o from sympy import isprime, nextprime, prime
%o from sympy.ntheory import count_digits
%o def a(n):
%o pn = prime(n); qn = nextprime(pn)
%o p, q = 2, 3; c = count_digits(p**pn*q**qn)
%o while not all(isprime(c[i]) for i in range(10)):
%o p, q = q, nextprime(q); c = count_digits(p**pn*q**qn)
%o return p
%o print([a(n) for n in range(1, 7)]) # _Michael S. Branicky_, Aug 20 2021
%Y Cf. A216854.
%K nonn,base
%O 1,1
%A _James G. Merickel_, Sep 25 2012
%E Name clarified by _Tanya Khovanova_, Aug 17 2021
%E a(23)-a(29) from _Michael S. Branicky_, Aug 25 2021
%E Name edited by _Michel Marcus_ and _Michael S. Branicky_, Aug 25 2021