login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217049
Least prime p such that all ten base-10 digits have prime counts in (p^prime(n))*(q^prime(n+1)), where q is the next prime after p.
1
18329, 1913, 1063, 109, 932839, 85061, 29729989, 5653759, 1958731, 20891539, 35008723, 28265837, 2, 3, 6238777, 276624683, 92343187, 24205651, 49598321, 17722981, 46741657, 219329923, 297614029, 106791577, 621528749, 217893821, 113824657, 122670287, 81263857
OFFSET
1,1
COMMENTS
Motivation for this sequence stems from the coincidence that (2^41)*(3^43) and (3^43)*(5^47) give prime counts for their digits.
EXAMPLE
(18329^2)*(18341^3) = 2072748335390985614861 has digit counts [2,2,2,3,2,2,2,2,3,2], all primes, and replacing the pair (18329,18341) with a smaller pair fails this criterion. In particular, (3733^2)*(3739^3) = 728420861672094091 has digit counts [3,2,3,0,2,0,2,2,2,2], not all prime.
MATHEMATICA
Table[p=2; While[!And@@PrimeQ[DigitCount[(p^Prime@n)*(NextPrime@p^Prime[n+1])]], p=NextPrime@p]; p, {n, 6}] (* Giorgos Kalogeropoulos, Aug 18 2021 *)
PROG
(Python)
from sympy import isprime, nextprime, prime
from sympy.ntheory import count_digits
def a(n):
pn = prime(n); qn = nextprime(pn)
p, q = 2, 3; c = count_digits(p**pn*q**qn)
while not all(isprime(c[i]) for i in range(10)):
p, q = q, nextprime(q); c = count_digits(p**pn*q**qn)
return p
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Aug 20 2021
CROSSREFS
Cf. A216854.
Sequence in context: A237737 A145822 A286035 * A251025 A203783 A071368
KEYWORD
nonn,base
AUTHOR
James G. Merickel, Sep 25 2012
EXTENSIONS
Name clarified by Tanya Khovanova, Aug 17 2021
a(23)-a(29) from Michael S. Branicky, Aug 25 2021
Name edited by Michel Marcus and Michael S. Branicky, Aug 25 2021
STATUS
approved