login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216992
Decimal expansion of Sum_{n = 1, ..., infinity } 1/n^(2^n).
1
1, 0, 6, 2, 6, 5, 2, 4, 1, 6, 0, 2, 3, 1, 0, 6, 5, 1, 6, 2, 3, 4, 3, 1, 1, 9, 0, 7, 9, 4, 9, 7, 3, 2, 7, 8, 6, 1, 6, 0, 6, 4, 6, 2, 4, 2, 9, 5, 0, 7, 8, 5, 4, 8, 7, 4, 8, 1, 2, 5, 0, 5, 8, 3, 2, 4, 0, 8, 9, 3, 8, 4, 6, 2, 0, 9, 3, 6, 6, 0, 5, 1, 9, 3, 9, 6, 8, 7, 1, 9, 6, 6, 4, 4, 4, 2, 4, 9, 8, 0, 4, 5, 8, 9, 3
OFFSET
1,3
COMMENTS
The sum converges very quickly and therefore just a few summands are quite enough to get the value accurate to hundreds of decimal places. For example, 1/10^(2^10) = 10^(-1024), meaning that the impact of n = 10 on the sum can't be seen among the first thousand decimal digits. - Alonso del Arte, Sep 21 2012
EXAMPLE
1.0626524160231065162343119079497327861...
MAPLE
evalf(sum(1/n^(2^n), n=1..infinity), 140); # Alois P. Heinz, Sep 29 2023
MATHEMATICA
RealDigits[Sum[1/n^(2^n), {n, 10}], 10, 105][[1]] (* T. D. Noe, Sep 21 2012 *)
PROG
(PARI) suminf(n=1, 1/n^2^n) \\ Charles R Greathouse IV, Apr 21 2016
CROSSREFS
Cf. A097547.
Sequence in context: A198227 A199505 A241033 * A308258 A214508 A343625
KEYWORD
cons,easy,nonn
AUTHOR
Nicolas M. Perrault, Sep 21 2012
STATUS
approved