login
A216992
Decimal expansion of Sum_{n = 1, ..., infinity } 1/n^(2^n).
1
1, 0, 6, 2, 6, 5, 2, 4, 1, 6, 0, 2, 3, 1, 0, 6, 5, 1, 6, 2, 3, 4, 3, 1, 1, 9, 0, 7, 9, 4, 9, 7, 3, 2, 7, 8, 6, 1, 6, 0, 6, 4, 6, 2, 4, 2, 9, 5, 0, 7, 8, 5, 4, 8, 7, 4, 8, 1, 2, 5, 0, 5, 8, 3, 2, 4, 0, 8, 9, 3, 8, 4, 6, 2, 0, 9, 3, 6, 6, 0, 5, 1, 9, 3, 9, 6, 8, 7, 1, 9, 6, 6, 4, 4, 4, 2, 4, 9, 8, 0, 4, 5, 8, 9, 3
OFFSET
1,3
COMMENTS
The sum converges very quickly and therefore just a few summands are quite enough to get the value accurate to hundreds of decimal places. For example, 1/10^(2^10) = 10^(-1024), meaning that the impact of n = 10 on the sum can't be seen among the first thousand decimal digits. - Alonso del Arte, Sep 21 2012
EXAMPLE
1.0626524160231065162343119079497327861...
MAPLE
evalf(sum(1/n^(2^n), n=1..infinity), 140); # Alois P. Heinz, Sep 29 2023
MATHEMATICA
RealDigits[Sum[1/n^(2^n), {n, 10}], 10, 105][[1]] (* T. D. Noe, Sep 21 2012 *)
PROG
(PARI) suminf(n=1, 1/n^2^n) \\ Charles R Greathouse IV, Apr 21 2016
CROSSREFS
Cf. A097547.
Sequence in context: A198227 A199505 A241033 * A308258 A214508 A343625
KEYWORD
cons,easy,nonn
AUTHOR
Nicolas M. Perrault, Sep 21 2012
STATUS
approved