login
A216971
Triangle read by rows: T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} that have exactly k nonrecurrent elements mapped to some (one or more) recurrent element. n >= 1, 0 <= k <= n-1.
3
1, 2, 2, 6, 18, 3, 24, 156, 72, 4, 120, 1520, 1260, 220, 5, 720, 17310, 21000, 7020, 600, 6, 5040, 232932, 363720, 187320, 32970, 1554, 7, 40320, 3698744, 6794256, 4746840, 1351840, 141288, 3920, 8, 362880, 68680656, 139241088, 121105152, 48822480, 8625456, 573048, 9720, 9, 3628800, 1471193370
OFFSET
1,2
COMMENTS
x in {1,2,...,n} is a recurrent element if there is some k such that f^k(x) = x where f^k(x) denotes iterated functional composition. In other words, a recurrent element is in a cycle of the functional digraph.
Row sums = n^n.
First column (k = 0) counts the n! bijective functions.
T(n,n-1) counts the n constant functions.
Conjecture: every entry in row n is divisible by n. - Jon Perry, Sep 21 2012
LINKS
FORMULA
E.g.f.: 1/(1-x*exp(y*T(x))) - 1 where T(x) is the e.g.f. for A000169.
Sum_{k=1..n-1} k * T(n,k) = A001864(n). - Geoffrey Critzer, Jan 01 2013
EXAMPLE
Triangle starts:
1,
2, 2,
6, 18, 3,
24, 156, 72, 4,
120, 1520, 1260, 220, 5,
720, 17310, 21000, 7020, 600, 6,
5040, 232932, 363720, 187320, 32970, 1554, 7,
...
MATHEMATICA
nn=7; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; f[list_]:=Select[list, #>0&]; Drop[Map[f, Range[0, nn]! CoefficientList[Series[1/(1-x Exp[y t]), {x, 0, nn}], {x, y}]], 1]//Grid
PROG
(PARI)
N=15; x='x+O('x^N);
T=serreverse(x*exp(-x));
egf=1/(1-x*exp('y*T)) - 1;
v=Vec(serlaplace(egf));
{ for (n=1, N-1, /* print triangle: */
row = Pol( v[n], 'y );
row = polrecip( row );
print( Vec(row) );
); }
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
Cf. A001864.
Sequence in context: A062833 A006250 A006249 * A019575 A178882 A186195
KEYWORD
nonn,nice,tabl
AUTHOR
Geoffrey Critzer, Sep 21 2012
STATUS
approved