login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216328
Values for b in abc-triples with a = 2.
0
243, 70225, 265879, 953125, 1015623, 1071873, 1922373, 6436341, 6739605, 7263025
OFFSET
1,1
COMMENTS
The listed 10 b-values are the ones for all (2,b,2+b) triples
with b from the range {1, 2, ..., 10^7}. The best quality among these values appears for n=8: (2, 6436341, 6436343), b = 3^10*109, with rad(2*b*(2+b)) = 15042 =2*3*23*109 and q(2,6436341,6436343) = 1.629911684 (maple 10 digits). See Tabl. I of the (not updated) link: The ABC Conjecture Home Page.
See A216323 for the list of increasing b values for abc-triples if a=1. There one finds also a reference and a maple program which can be adapted to a=2 instead of a=1.
This sequence is infinite because it contains the infinite subsequence b(k) = 243^(84k+1), k >= 0. - William Hu, Aug 29 2024
LINKS
FORMULA
(2, b=a(n), 2+a(n)) is an abc-triple (which has quality q > 1) with increasingly ordered b values. See the comment above for abc-triples.
EXAMPLE
n: (a=2, b, c=2+a), rad(a*b*c), q(a*b*c) (maple 10 digits)
1: (2, 243, 245), 210, 1.028828797
2: (2, 70225, 70227), 27030, 1.093563284
3: (2, 255879, 255881), 252642, 1.001024059
4: (2, 953125, 953127), 525210, 1.045245231
5: (2, 1015623, 1015625), 128310, 1.175886268
6: (2, 1071873, 1071875), 926310, 1.010623492
7: (2, 1922373, 1922375), 799890, 1.064510569
8: (2, 6436341, 6436343), 15042, 1.629911684
9: (2, 6739605, 6739607), 3621030, 1.041135746
10: (2, 7263025, 7263027), 94710, 1.378732296
...
From Wolfdieter Lang, Oct 02 2012: (Start)
The prime number decomposition of the ten b-values is
3^5, 5^2*53^2, 3^9*13, 5^6*61, 3^2*7^4*47, 3^5*11*401, 3^8*293, 3^10*109, 3^6*5*43^2, 5^2*7^4*11^2.
The ten c = b+2 numbers have the prime number decomposition
5*7^2, 3^5*17^2, 41*79^2, 3^4*7*41^2, 5^7*13, 5^5*7^3, 5^3*7*13^3, 23^5, 7^5*401, 3^11*41. (End)
MAPLE
See the program given in A216323, adapted to a=2.
CROSSREFS
Sequence in context: A223978 A223573 A223329 * A086649 A184691 A017021
KEYWORD
nonn,more
AUTHOR
Wolfdieter Lang, Sep 28 2012
STATUS
approved