login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p=prime(i) of level (1,4), i.e., such that A118534(i) = prime(i-4).
1

%I #22 Jun 19 2021 04:00:37

%S 6581,7963,13063,14107,17053,17627,20563,21347,22193,22877,28319,

%T 30727,34981,35171,41549,42101,45197,46103,48823,53201,53899,56269,

%U 65449,65993,66191,69031,69403,73613,74101,74323,75797,81973,86209,91463,96293,101537,102563

%N Primes p=prime(i) of level (1,4), i.e., such that A118534(i) = prime(i-4).

%C If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

%H Fabien Sibenaler, <a href="/A216177/b216177.txt">Table of n, a(n) for n = 1..10000</a>

%e a(2) = 7963 = prime(1006) because 2*prime(1006) - prime(1007) = 2*7963 - 7993 = 7933 = prime(1002).

%t With[{m = 4}, Prime@ Select[Range[m + 1, 10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* _Michael De Vlieger_, Jul 16 2017 *)

%Y Subsequence of A125830 and A162174.

%Y Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404, A125565, A125572, A125574, A125576, A125623.

%K nonn

%O 1,1

%A _Fabien Sibenaler_, Mar 10 2013