The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216166 Composite numbers and 1 which yield a prime whenever a 3 is inserted anywhere in them (including at the beginning or end). 3
 1, 121, 343, 361, 533, 637, 793, 889, 943, 1183, 3013, 3223, 3353, 3403, 3757, 3827, 3893, 4313, 4543, 4963, 8653, 10423, 14257, 20339, 23083, 23419, 30917, 33031, 33101, 33323, 33433, 33701, 33821, 34333, 34393, 35453, 36437, 36533, 39137, 39247, 42869, 43337 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Paolo P. Lava, Table of n, a(n) for n = 1..150 EXAMPLE 3827 is not prime but 38273, 38237, 38327 and 33827 are all primes. MAPLE with(numtheory); A216166:=proc(q, x) local a, b, c, i, n, ok; for n from 1 to q do if not isprime(n) then a:=n; b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=n; ok:=1; for i from 0 to b do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A216166(1000, 3); MATHEMATICA ap3Q[n_]:=CompositeQ[n]&&AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ n], 3, k], {k, IntegerLength[n]+1}], PrimeQ]; Join[{1}, Select[Range[ 44000], ap3Q]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 25 2020 *) PROG (Magma) [n: n in [1..50000] | not IsPrime(n) and forall{m: t in [0..#Intseq(n)] | IsPrime(m) where m is (Floor(n/10^t)*10+3)*10^t+n mod 10^t}]; // Bruno Berselli, Sep 03 2012 CROSSREFS Cf. A068673, A068674, A068677, A068679, A069246, A215417, A215419-A215421, A216165, A216167-A216169. Sequence in context: A112075 A068872 A203856 * A208242 A167721 A330670 Adjacent sequences: A216163 A216164 A216165 * A216167 A216168 A216169 KEYWORD nonn,base AUTHOR Paolo P. Lava, Sep 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 17:48 EDT 2024. Contains 374459 sequences. (Running on oeis4.)