login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215967
Numbers n such that the absolute value of the difference between the sum of the distinct prime divisors of n that are congruent to 1 mod 4 and the sum of the distinct prime divisors of n that are congruent to 3 mod 4 is a square.
2
165, 330, 429, 495, 660, 741, 805, 825, 858, 990, 1045, 1155, 1173, 1235, 1245, 1287, 1309, 1320, 1482, 1485, 1610, 1645, 1650, 1716, 1815, 1955, 1980, 2090, 2145, 2223, 2261, 2301, 2310, 2346, 2365, 2470, 2475, 2490, 2574, 2618, 2635, 2640, 2765, 2795, 2821
OFFSET
1,1
LINKS
EXAMPLE
2365 is in the sequence because 2365 = 5*11*43 and (11+43) - 5 = 49 is a square, where {11, 43} == 3 mod 4 and 5 ==1 mod 4.
MAPLE
with(numtheory):for n from 2 to 1000 do:x:=factorset(n):n1:=nops(x):s1:=0:s3:=0:for m from 1 to n1 do: if irem(x[m], 4)=1 then s1:=s1+x[m]:else if irem(x[m], 4)=3 then s3:=s3+x[m]:else fi:fi:od:x:=abs(s1-s3):y:=sqrt(x):if s1>0 and s3>0 and y=floor(y) then printf(`%d, `, n):else fi:od:
MATHEMATICA
aQ[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, (t1 = Total[Select[p, Mod[#, 4] == 1 &]]) > 0 && (t2 = Total[Select[p, Mod[#, 4] == 3 &]]) > 0 && IntegerQ@Sqrt@Abs[t1 - t2]]; Select[Range[3000], aQ] (* Amiram Eldar, Sep 09 2019 *)
CROSSREFS
Cf. A215951.
Sequence in context: A176877 A356095 A323379 * A029563 A145665 A135806
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 29 2012
STATUS
approved