login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215951
Numbers n such that the absolute value of the difference between the sum of the distinct prime divisors of n that are congruent to 1 mod 4 and the sum of the distinct prime divisors of n that are congruent to 3 mod 4 is a prime.
2
15, 30, 35, 45, 60, 70, 75, 90, 105, 120, 135, 140, 143, 150, 175, 180, 210, 225, 240, 245, 255, 270, 273, 280, 285, 286, 300, 315, 323, 350, 357, 360, 375, 385, 405, 420, 435, 450, 455, 465, 480, 490, 510, 525, 540, 546, 560, 561, 570, 572, 600, 609, 615, 630
OFFSET
1,1
LINKS
EXAMPLE
285 is in the sequence because 285 = 3*5*19 and (3+19) - 5 = 17 is prime, where 5 ==1 mod 4 and 3, 19 ==3 mod 4.
MAPLE
with(numtheory):for n from 2 to 1000 do:x:=factorset(n):n1:=nops(x):s1:=0:s3:=0:for m from 1 to n1 do: if irem(x[m], 4)=1 then s1:=s1+x[m]:else if irem(x[m], 4)=3 then s3:=s3+x[m]:else fi:fi:od:x:=abs(s1-s3):if s1>0 and s1>0 and s3>0 and type (x, prime)=true then printf(`%d, `, n):else fi:od:
MATHEMATICA
aQ[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, (t1 = Total[Select[p, Mod[#, 4] == 1 &]]) > 0 && (t2 = Total[Select[p, Mod[#, 4] == 3 &]]) > 0 && PrimeQ@Abs[t1 - t2]]; Select[Range[630], aQ] (* Amiram Eldar, Sep 09 2019 *)
CROSSREFS
Cf. A215947.
Sequence in context: A239247 A291045 A079877 * A060700 A167210 A131933
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 28 2012
STATUS
approved