Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 06 2023 04:16:32
%S 1,3,16,105,770,6048,49764,423423,3695120,32891430,297473956,
%T 2725789248,25251200716,236101791900,2225241057600,21118368117105,
%U 201640796593290,1935642349666080,18670022226540300,180851385211254450,1758621701183524320,17160853351737885660
%N Product of Fibonacci and Catalan numbers: a(n) = A000045(2*n+2)*A000108(n).
%C More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2) with S(0)=1, |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
%H Vincenzo Librandi, <a href="/A215931/b215931.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: sqrt( (1-6*x - sqrt(1-12*x+16*x^2))/10 )/x.
%F a(n) = Fibonacci(2*n+2) * binomial(2*n,n)/(n+1).
%F a(n) = Fibonacci(n+1) * Lucas(n+1) * binomial(2*n,n)/(n+1), where Lucas(n+1) = 2*Fibonacci(n) + Fibonacci(n+1) = A000032(n+1).
%F a(n) = A000032(n+1) * A098614(n).
%F n*(n+1)*a(n) -6*n*(2*n-1)*a(n-1) +4*(2*n-1)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Nov 17 2018
%F Sum_{n>=0} a(n)/16^n = 4*sqrt(1-2/sqrt(5)). - _Amiram Eldar_, May 06 2023
%e G.f.: A(x) = 1 + 3*x + 16*x^2 + 105*x^3 + 770*x^4 + 6048*x^5 + 49764*x^6 +...
%e such that the coefficients equal the term-wise products:
%e A = [1*1, 3*1, 8*2, 21*5, 55*14, 144*42, 377*132, 987*429, 2584*1430, ...].
%e Related expansions.
%e A(x)^2 = 1 + 6*x + 41*x^2 + 306*x^3 + 2426*x^4 + 20076*x^5 + 171481*x^6 +...
%e A(x)^3 = 1 + 9*x + 75*x^2 + 630*x^3 + 5400*x^4 + 47223*x^5 + 420277*x^6 +...
%e Incidentally, note that (2*n+1) divides [x^n] A(x)^3:
%e A^3 = [1*1, 3*3, 5*15, 7*90, 9*600, 11*4293, 13*32329, 15*253110, ...].
%t Table[Fibonacci[2*n+2]*Binomial[2*n,n]/(n+1), {n,0,25}] (* _Vincenzo Librandi_, Aug 28 2012 *)
%o (PARI) {a(n)=fibonacci(2*n+2)*binomial(2*n,n)/(n+1)}
%o (PARI) {a(n)=fibonacci(n+1)*(2*fibonacci(n)+fibonacci(n+1))*binomial(2*n,n)/(n+1)}
%o (PARI) {a(n)=polcoeff( sqrt( (1-6*x - sqrt(1-12*x+16*x^2 +x^3*O(x^n)))/10 )/x,n)}
%o for(n=0,21,print1(a(n),", "))
%o (Magma) [Fibonacci(2*n+2)*Binomial(2*n, n)/(n+1): n in [0..22]] // _Vincenzo Librandi_, Aug 28 2012
%Y Cf. A098614, A098616, A001906, A000045, A000032.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Aug 27 2012