login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215931 Product of Fibonacci and Catalan numbers: a(n) = A000045(2*n+2)*A000108(n). 2
1, 3, 16, 105, 770, 6048, 49764, 423423, 3695120, 32891430, 297473956, 2725789248, 25251200716, 236101791900, 2225241057600, 21118368117105, 201640796593290, 1935642349666080, 18670022226540300, 180851385211254450, 1758621701183524320, 17160853351737885660 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2) with S(0)=1, |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: sqrt( (1-6*x - sqrt(1-12*x+16*x^2))/10 )/x.

a(n) = Fibonacci(2*n+2) * binomial(2*n,n)/(n+1).

a(n) = Fibonacci(n+1) * Lucas(n+1) * binomial(2*n,n)/(n+1), where Lucas(n+1) = 2*Fibonacci(n) + Fibonacci(n+1) = A000032(n+1).

a(n) = A000032(n+1) * A098614(n).

n*(n+1)*a(n) -6*n*(2*n-1)*a(n-1) +4*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 17 2018

EXAMPLE

G.f.: A(x) = 1 + 3*x + 16*x^2 + 105*x^3 + 770*x^4 + 6048*x^5 + 49764*x^6 +...

such that the coefficients equal the term-wise products:

A = [1*1, 3*1, 8*2, 21*5, 55*14, 144*42, 377*132, 987*429, 2584*1430, ...].

Related expansions.

A(x)^2 = 1 + 6*x + 41*x^2 + 306*x^3 + 2426*x^4 + 20076*x^5 + 171481*x^6 +...

A(x)^3 = 1 + 9*x + 75*x^2 + 630*x^3 + 5400*x^4 + 47223*x^5 + 420277*x^6 +...

Incidentally, note that (2*n+1) divides [x^n] A(x)^3:

A^3 = [1*1, 3*3, 5*15, 7*90, 9*600, 11*4293, 13*32329, 15*253110, ...].

MATHEMATICA

Table[Fibonacci[2*n+2]*Binomial[2*n, n]/(n+1), {n, 0, 25}] (* Vincenzo Librandi, Aug 28 2012 *)

PROG

(PARI) {a(n)=fibonacci(2*n+2)*binomial(2*n, n)/(n+1)}

(PARI) {a(n)=fibonacci(n+1)*(2*fibonacci(n)+fibonacci(n+1))*binomial(2*n, n)/(n+1)}

(PARI) {a(n)=polcoeff( sqrt( (1-6*x - sqrt(1-12*x+16*x^2 +x^3*O(x^n)))/10 )/x, n)}

for(n=0, 21, print1(a(n), ", "))

(MAGMA) [Fibonacci(2*n+2)*Binomial(2*n, n)/(n+1): n in [0..22]] // Vincenzo Librandi, Aug 28 2012

CROSSREFS

Cf. A098614, A098616, A001906, A000045, A000032.

Sequence in context: A110903 A206351 A085614 * A271777 A014304 A063548

Adjacent sequences:  A215928 A215929 A215930 * A215932 A215933 A215934

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Aug 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 4 05:34 EDT 2020. Contains 333212 sequences. (Running on oeis4.)