login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215931
Product of Fibonacci and Catalan numbers: a(n) = A000045(2*n+2)*A000108(n).
2
1, 3, 16, 105, 770, 6048, 49764, 423423, 3695120, 32891430, 297473956, 2725789248, 25251200716, 236101791900, 2225241057600, 21118368117105, 201640796593290, 1935642349666080, 18670022226540300, 180851385211254450, 1758621701183524320, 17160853351737885660
OFFSET
0,2
COMMENTS
More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2) with S(0)=1, |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
LINKS
FORMULA
G.f.: sqrt( (1-6*x - sqrt(1-12*x+16*x^2))/10 )/x.
a(n) = Fibonacci(2*n+2) * binomial(2*n,n)/(n+1).
a(n) = Fibonacci(n+1) * Lucas(n+1) * binomial(2*n,n)/(n+1), where Lucas(n+1) = 2*Fibonacci(n) + Fibonacci(n+1) = A000032(n+1).
a(n) = A000032(n+1) * A098614(n).
n*(n+1)*a(n) -6*n*(2*n-1)*a(n-1) +4*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 17 2018
Sum_{n>=0} a(n)/16^n = 4*sqrt(1-2/sqrt(5)). - Amiram Eldar, May 06 2023
EXAMPLE
G.f.: A(x) = 1 + 3*x + 16*x^2 + 105*x^3 + 770*x^4 + 6048*x^5 + 49764*x^6 +...
such that the coefficients equal the term-wise products:
A = [1*1, 3*1, 8*2, 21*5, 55*14, 144*42, 377*132, 987*429, 2584*1430, ...].
Related expansions.
A(x)^2 = 1 + 6*x + 41*x^2 + 306*x^3 + 2426*x^4 + 20076*x^5 + 171481*x^6 +...
A(x)^3 = 1 + 9*x + 75*x^2 + 630*x^3 + 5400*x^4 + 47223*x^5 + 420277*x^6 +...
Incidentally, note that (2*n+1) divides [x^n] A(x)^3:
A^3 = [1*1, 3*3, 5*15, 7*90, 9*600, 11*4293, 13*32329, 15*253110, ...].
MATHEMATICA
Table[Fibonacci[2*n+2]*Binomial[2*n, n]/(n+1), {n, 0, 25}] (* Vincenzo Librandi, Aug 28 2012 *)
PROG
(PARI) {a(n)=fibonacci(2*n+2)*binomial(2*n, n)/(n+1)}
(PARI) {a(n)=fibonacci(n+1)*(2*fibonacci(n)+fibonacci(n+1))*binomial(2*n, n)/(n+1)}
(PARI) {a(n)=polcoeff( sqrt( (1-6*x - sqrt(1-12*x+16*x^2 +x^3*O(x^n)))/10 )/x, n)}
for(n=0, 21, print1(a(n), ", "))
(Magma) [Fibonacci(2*n+2)*Binomial(2*n, n)/(n+1): n in [0..22]] // Vincenzo Librandi, Aug 28 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 27 2012
STATUS
approved