login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215716
Number of permutations on n points admitting a fifth root.
8
1, 1, 2, 6, 24, 96, 576, 4032, 32256, 290304, 2612736, 28740096, 344881152, 4483454976, 62768369664, 878757175296, 14060114804736, 239021951680512, 4302395130249216, 81745507474735104, 1553164642019966976, 32616457482419306496, 717562064613224742912
OFFSET
0,3
COMMENTS
a(n) is the number of permutations of n points such that for all positive m, the number of (5m)-cycles is a multiple of 5.
LINKS
H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 148-149, Thms. 4.8.2 and 4.8.3.
FORMULA
E.g.f.: (1 - x^5)^(1/5)/(1 - x) * Product(E_5(x^(5m)/(5m)), m = 1 .. infinity), where E_5(x) = 1 + x^5/5! + x^10/10! + ... .
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(j, igcd(i, 5))<>0, 0, (i-1)!^j*
multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Sep 08 2014
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[Mod[j, GCD[i, 5]] != 0, 0, (i-1)!^j*multinomial[n, Prepend[Table[i, {j}], n-i*j]]/j!*b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 21 2016, after Alois P. Heinz *)
PROG
(PARI)
{ A215716_list(numterms) = Vec(serlaplace((1 - x^5 + O(x^numterms))^(1/5)/(1-x) * prod(m=1, numterms\5, exp5(x^(5*m)/(5*m), numterms\(5*m)+1)))); }
{ exp5(y, prec) = subst(serconvol(exp(x + O(x^prec)), 1/(1-x^5) + O(x^prec)), x, y); }
CROSSREFS
Column k=5 of A247005.
Sequence in context: A147887 A053502 A053504 * A060725 A150299 A094012
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Aug 22 2012
STATUS
approved