login
A214974
Numbers k for which A116543(k) = A007895(k); i.e., the Lucas and Zeckendorf representations of k have the same length.
3
1, 2, 3, 6, 9, 10, 14, 15, 17, 22, 27, 28, 36, 38, 41, 43, 44, 46, 52, 58, 59, 61, 62, 66, 69, 74, 75, 81, 84, 94, 95, 96, 98, 107, 112, 114, 117, 119, 120, 122, 128, 131, 136, 139, 148, 152, 153, 154, 155, 159, 161, 164, 173, 175, 176, 181, 182, 184, 185
OFFSET
1,2
LINKS
EXAMPLE
k...Lucas.....Zeckendorf....counter
1...1.........1.............a(1)= 1
2...2.........2.............a(2)= 2
3...3.........3.............a(3)= 3
4...4.........3+1
5...4+1.......5
6...4+2.......5+1...........a(4)= 6
7...7.........5+2
8...7+1.......8
9...7+2.......8+1...........a(5)= 9
MATHEMATICA
u = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 50}]]];
u1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, u]][[2, 1]], # > 0 &]] &, Range[1000]];
v = Reverse[Table[Fibonacci[n + 1], {n, 1, 50}]];
v1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, v]][[2, 1]], # > 0 &]] &, Range[1000]];
s[n_] := If[u1[[n]] == v1[[n]], 1, 0];
s1 = Table[s[n], {n, 1, 200}];
f1 = Flatten[Position[s1, 1]] (* A214974 *)
s[n_] := If[u1[[n]] < v1[[n]], 1, 0];
s2 = Table[s[n], {n, 1, 200}];
f2 = Flatten[Position[s2, 1]] (* A214975 *)
s[n_] := If[u1[[n]] > v1[[n]], 1, 0];
s3 = Table[s[n], {n, 1, 200}];
f3 = Flatten[Position[s3, 1]] (* A214976 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 20 2012
STATUS
approved