login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214940
Number of squarefree words of length n in a 6-ary alphabet
0
6, 30, 150, 720, 3480, 16680, 80040, 383520, 1838160, 8807400, 42202560, 202209720, 968880960, 4642304520, 22243228680, 106576361760, 510651000360
OFFSET
1,1
COMMENTS
Column 5 of A214943
EXAMPLE
Some solutions for n=6
..4....4....4....1....5....5....4....5....2....1....5....4....2....1....4....5
..0....5....5....4....2....4....1....1....1....3....3....1....4....2....1....2
..5....3....0....5....3....2....4....4....0....1....4....0....3....0....2....1
..3....4....3....3....2....5....2....5....5....4....0....3....5....4....4....0
..5....1....4....5....1....3....3....3....2....5....3....4....0....2....5....5
..0....0....5....2....3....4....2....5....3....2....4....2....2....4....1....1
PROG
(Python)
from itertools import product
def a(n):
if n == 1: return 6
squares = ["".join(u) + "".join(u)
for r in range(1, n//2 + 1) for u in product("012345", repeat=r)]
words = ("0"+"".join(w) for w in product("012345", repeat=n-1))
return 6*sum(all(s not in w for s in squares) for w in words)
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Jun 30 2021
CROSSREFS
Sequence in context: A079738 A127741 A073965 * A002913 A157519 A075886
KEYWORD
nonn
AUTHOR
R. H. Hardin Jul 30 2012
STATUS
approved