OFFSET
1,1
COMMENTS
Column 5 of A214943
EXAMPLE
Some solutions for n=6
..4....4....4....1....5....5....4....5....2....1....5....4....2....1....4....5
..0....5....5....4....2....4....1....1....1....3....3....1....4....2....1....2
..5....3....0....5....3....2....4....4....0....1....4....0....3....0....2....1
..3....4....3....3....2....5....2....5....5....4....0....3....5....4....4....0
..5....1....4....5....1....3....3....3....2....5....3....4....0....2....5....5
..0....0....5....2....3....4....2....5....3....2....4....2....2....4....1....1
PROG
(Python)
from itertools import product
def a(n):
if n == 1: return 6
squares = ["".join(u) + "".join(u)
for r in range(1, n//2 + 1) for u in product("012345", repeat=r)]
words = ("0"+"".join(w) for w in product("012345", repeat=n-1))
return 6*sum(all(s not in w for s in squares) for w in words)
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Jun 30 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Jul 30 2012
STATUS
approved