OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
Veronika Irvine, Stephen Melczer, Frank Ruskey, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08725 [math.CO], 2018.
FORMULA
a(n) = Sum_{k=0..floor(n/4)} C(floor((n+1)/2), (n mod 2) + 2*(floor(n/4) - k)) * A000108(k + floor((n+2)/4)).
Let g.f. A(x) = B(x^2) + x*C(x^2), then
B(x) = (1/x)*Series_Reversion( x*(1-x)*(1-2*x)^2 / (1-4*x+5*x^2-2*x^3+x^4) ),
C(x) = (1/x)*Series_Reversion( x / (1+2*x+3*x^2+2*x^3 + 2*x^6*Catalan(-x^2)^3) )
where Catalan(x) = (1-sqrt(1-4*x))/(2*x). - Paul D. Hanna, Aug 03 2012
a(n) ~ c * 6^(n/2+1)/(5*sqrt(5*Pi)*n^(3/2)), where c = 2 * sqrt(3) if n is even and c = 3 * sqrt(2) if n is odd. - Vaclav Kotesovec, Nov 07 2013
EXAMPLE
a(5) = 7: UuFdD, UuDdF, UdUdF UdFuD, FuUdD, FuFdF, FuDuD, showing even-numbered steps in lower case.
MAPLE
a:= proc(n) option remember; `if`(n<7, [1, 1, 1, 2, 3, 7, 11][n+1],
(4*(n+1)*(5066415*n^3-39734381*n^2+51596519*n-4935351)*a(n-1)
+(83427510*n^4-315565444*n^3-532176102*n^2+1458851596*n
+157931232)*a(n-2) -(157058865*n^4-1556016371*n^3
+3706209891*n^2+220948511*n-3544991136)*a(n-3) -(107648400*n^4
-766240720*n^3+696027720*n^2+4498794592*n -8240373864)*a(n-4)
+8*(n-4)*(25332075*n^3-234136810*n^2+385914455*n+722870772)*a(n-5)
-24*(n-5)*(1345605*n^3-3657347*n^2-11033479*n+18898695)*a(n-6)
+12*(n-5)*(n-6)*(5066415*n^2-14402306*n-21087469)*a(n-7)) /
(8*(n+2)*(n+1)*(1345605*n^2-5002952*n-4935351)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Nov 02 2013
MATHEMATICA
Table[Sum[Binomial[Floor[(n+1)/2], Mod[n, 2]+2*(Floor[n/4]-k)] * CatalanNumber[k+Floor[(n+2)/4]], {k, 0, Floor[n/4]}], {n, 0, 34}]
PROG
(PARI) /* G.f. A(x) = B(x^2) + x*C(x^2): */ {a(n)=local(A, B, C);
B=(1/x)*serreverse(x*(1-x)*(1-2*x)^2/(1-4*x+5*x^2-2*x^3+x^4+x*O(x^n)));
C=(1/x)*serreverse(x/(1+2*x+3*x^2+2*x^3+(1-sqrt(1+4*x^2+x*O(x^n)))^3/4));
A=subst(B, x, x^2)+x*subst(C, x, x^2); polcoeff(A, n)} \\ Paul D. Hanna, Aug 03 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
David Scambler, Jul 30 2012
STATUS
approved