login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214938
Number of Motzkin n-paths avoiding even-numbered steps that are flat steps.
3
1, 1, 1, 2, 3, 7, 11, 28, 46, 122, 207, 562, 977, 2693, 4769, 13288, 23872, 67064, 121862, 344588, 631958, 1796518, 3319923, 9479780, 17630692, 50532640, 94493713, 271710662, 510468519, 1471935235, 2776629563, 8026070768, 15194389388, 44015873308, 83591476528
OFFSET
0,4
LINKS
Veronika Irvine, Stephen Melczer, Frank Ruskey, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08725 [math.CO], 2018.
FORMULA
a(n) = Sum_{k=0..floor(n/4)} C(floor((n+1)/2), (n mod 2) + 2*(floor(n/4) - k)) * A000108(k + floor((n+2)/4)).
Let g.f. A(x) = B(x^2) + x*C(x^2), then
B(x) = (1/x)*Series_Reversion( x*(1-x)*(1-2*x)^2 / (1-4*x+5*x^2-2*x^3+x^4) ),
C(x) = (1/x)*Series_Reversion( x / (1+2*x+3*x^2+2*x^3 + 2*x^6*Catalan(-x^2)^3) )
where Catalan(x) = (1-sqrt(1-4*x))/(2*x). - Paul D. Hanna, Aug 03 2012
a(n) ~ c * 6^(n/2+1)/(5*sqrt(5*Pi)*n^(3/2)), where c = 2 * sqrt(3) if n is even and c = 3 * sqrt(2) if n is odd. - Vaclav Kotesovec, Nov 07 2013
EXAMPLE
a(5) = 7: UuFdD, UuDdF, UdUdF UdFuD, FuUdD, FuFdF, FuDuD, showing even-numbered steps in lower case.
MAPLE
a:= proc(n) option remember; `if`(n<7, [1, 1, 1, 2, 3, 7, 11][n+1],
(4*(n+1)*(5066415*n^3-39734381*n^2+51596519*n-4935351)*a(n-1)
+(83427510*n^4-315565444*n^3-532176102*n^2+1458851596*n
+157931232)*a(n-2) -(157058865*n^4-1556016371*n^3
+3706209891*n^2+220948511*n-3544991136)*a(n-3) -(107648400*n^4
-766240720*n^3+696027720*n^2+4498794592*n -8240373864)*a(n-4)
+8*(n-4)*(25332075*n^3-234136810*n^2+385914455*n+722870772)*a(n-5)
-24*(n-5)*(1345605*n^3-3657347*n^2-11033479*n+18898695)*a(n-6)
+12*(n-5)*(n-6)*(5066415*n^2-14402306*n-21087469)*a(n-7)) /
(8*(n+2)*(n+1)*(1345605*n^2-5002952*n-4935351)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Nov 02 2013
MATHEMATICA
Table[Sum[Binomial[Floor[(n+1)/2], Mod[n, 2]+2*(Floor[n/4]-k)] * CatalanNumber[k+Floor[(n+2)/4]], {k, 0, Floor[n/4]}], {n, 0, 34}]
PROG
(PARI) /* G.f. A(x) = B(x^2) + x*C(x^2): */ {a(n)=local(A, B, C);
B=(1/x)*serreverse(x*(1-x)*(1-2*x)^2/(1-4*x+5*x^2-2*x^3+x^4+x*O(x^n)));
C=(1/x)*serreverse(x/(1+2*x+3*x^2+2*x^3+(1-sqrt(1+4*x^2+x*O(x^n)))^3/4));
A=subst(B, x, x^2)+x*subst(C, x, x^2); polcoeff(A, n)} \\ Paul D. Hanna, Aug 03 2012
CROSSREFS
Sequence in context: A305750 A107857 A107858 * A143926 A112840 A014981
KEYWORD
nonn
AUTHOR
David Scambler, Jul 30 2012
STATUS
approved