OFFSET
0,2
COMMENTS
Different orderings of summands are counted, e.g., 1 = 1^2 + 0^2 + 0^4 + 0^4 = 0^2 + 1^2 + 0^4 + 0^4 = 0^2 + 0^2 + 1^4 + 0^4 = 0^2 + 0^2 + 0^4 + 1^4, so a(1)=4.
Conjecture: a(n) != 0, that is, all numbers are sums of three squares and one fourth power.
FORMULA
G.f.: (Sum_{j>=0} x^(j^2))^3 * (Sum_{j>=0} x^(j^4)) (see PARI code).
PROG
(PARI)
N=10^3; x='x+O('x^N);
S(e)=sum(j=0, ceil(N^(1/e)), x^(j^e));
v=Vec( S(4)^1 * S(2)^3 )
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 29 2012
STATUS
approved