login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXnXn triangular 0..k arrays with every horizontal row having the same average value
12

%I #4 Jul 22 2012 07:44:36

%S 2,3,2,4,5,2,5,8,23,2,6,13,62,401,2,7,18,157,1862,20351,2,8,25,312,

%T 10177,187862,2869211,2,9,32,601,33352,3330677,63120962,1127599139,2,

%U 10,41,986,103651,20608352,5495329427,71200442882,1248252244661,2,11,50,1619

%N T(n,k)=Number of nXnXn triangular 0..k arrays with every horizontal row having the same average value

%C Table starts

%C .2.....3......4.......5........6.........7.........8..........9.........10

%C .2.....5......8......13.......18........25........32.........41.........50

%C .2....23.....62.....157......312.......601.......986.......1619.......2426

%C .2...401...1862...10177....33352....103651....250042.....589763....1199614

%C .2.20351.187862.3330677.20608352.121537201.493575042.1877543213.5767190924

%H R. H. Hardin, <a href="/A214595/b214595.txt">Table of n, a(n) for n = 1..1475</a>

%F Empirical for row n:

%F n=1: a(k)=2*a(k-1)-a(k-2)

%F n=2: a(k)=2*a(k-1)-2*a(k-3)+a(k-4)

%F n=3: (order 12 antisymmetric)

%F n=4: (order 32 symmetric)

%F n=5: (order 84 symmetric)

%e Some solutions for n=4 k=4

%e .....2........1........2........2........2........2........2........2

%e ....3.1......0.2......2.2......3.1......2.2......1.3......4.0......4.0

%e ...3.2.1....0.3.0....3.2.1....2.4.0....0.2.4....3.0.3....1.2.3....4.0.2

%e ..2.2.3.1..2.1.0.1..1.2.4.1..4.2.2.0..1.4.3.0..4.0.2.2..3.2.3.0..4.0.4.0

%Y Row 2 is A000982(n+1)

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Jul 22 2012