login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214595
T(n,k)=Number of nXnXn triangular 0..k arrays with every horizontal row having the same average value
12
2, 3, 2, 4, 5, 2, 5, 8, 23, 2, 6, 13, 62, 401, 2, 7, 18, 157, 1862, 20351, 2, 8, 25, 312, 10177, 187862, 2869211, 2, 9, 32, 601, 33352, 3330677, 63120962, 1127599139, 2, 10, 41, 986, 103651, 20608352, 5495329427, 71200442882, 1248252244661, 2, 11, 50, 1619
OFFSET
1,1
COMMENTS
Table starts
.2.....3......4.......5........6.........7.........8..........9.........10
.2.....5......8......13.......18........25........32.........41.........50
.2....23.....62.....157......312.......601.......986.......1619.......2426
.2...401...1862...10177....33352....103651....250042.....589763....1199614
.2.20351.187862.3330677.20608352.121537201.493575042.1877543213.5767190924
LINKS
FORMULA
Empirical for row n:
n=1: a(k)=2*a(k-1)-a(k-2)
n=2: a(k)=2*a(k-1)-2*a(k-3)+a(k-4)
n=3: (order 12 antisymmetric)
n=4: (order 32 symmetric)
n=5: (order 84 symmetric)
EXAMPLE
Some solutions for n=4 k=4
.....2........1........2........2........2........2........2........2
....3.1......0.2......2.2......3.1......2.2......1.3......4.0......4.0
...3.2.1....0.3.0....3.2.1....2.4.0....0.2.4....3.0.3....1.2.3....4.0.2
..2.2.3.1..2.1.0.1..1.2.4.1..4.2.2.0..1.4.3.0..4.0.2.2..3.2.3.0..4.0.4.0
CROSSREFS
Row 2 is A000982(n+1)
Sequence in context: A226208 A304743 A214540 * A357255 A136181 A265110
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 22 2012
STATUS
approved