

A214421


Numbers not representable as the sum of three 12gonal numbers.


2



4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 68, 69, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are an infinite number of numbers that are not the sum of three 12gonal numbers.


REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, D3.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000
R. K. Guy, Every number is expressible as the sum of how many polygonal numbers?, Amer. Math. Monthly 101 (1994), 169172.


MATHEMATICA

nn = 100; dod = Table[n*(5n4), {n, 0, nn}]; t = Table[0, {dod[[1]]}]; Do[n = dod[[i]] + dod[[j]] + dod[[k]]; If[n <= dod[[1]], t[[n]] = 1], {i, nn}, {j, i, nn}, {k, j, nn}]; Flatten[Position[t, 0]]


CROSSREFS

Cf. A051624 (12gonal numbers).
Cf. A118278, A118279.
Sequence in context: A194283 A299546 A039128 * A294237 A162706 A088331
Adjacent sequences: A214418 A214419 A214420 * A214422 A214423 A214424


KEYWORD

nonn


AUTHOR

T. D. Noe, Jul 17 2012


STATUS

approved



