Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Aug 06 2024 10:36:46
%S 2,11,212,11211,21211212,1121121211211,212112121121121211212,
%T 1121121211211212112121121121211211,
%U 2121121211211212112121121121211211212112121121121211212,11211212112112121121211211212112112121121211211212112121121121211211212112121121121211211
%N List of singular subwords (or factors) of the Fibonacci word A003842.
%C Complementing the first and last digits of each term gives (essentially) A214216.
%H Kalle Saari, <a href="https://citeseerx.ist.psu.edu/pdf/226ad5ee4e916bbddb5775d36d4d126074ca1c27">Periods of factors of the Fibonacci word</a>, Department of Mathematics and Turku Centre for Computer Science, University of Turku, 2001 4 Turku, Finland.
%H Kalle Saari, <a href="https://www.semanticscholar.org/paper/PERIODS-OF-FACTORS-OF-THE-FIBONACCI-WORD-KALLE-Saari/226ad5ee4e916bbddb5775d36d4d126074ca1c27">Periods of factors of the Fibonacci word</a>, in Proceedings of the Sixth International Conference on Words (WORDS’07). Institut de Mathématiques de Luminy (2007) 273-279.
%H Zhi-Xiong Wen and Zhi-Ying Wen, <a href="https://doi.org/10.1006/eujc.1994.1060">Some properties of the singular words of the Fibonacci word</a>, European J. Combin. 15 (1994), 587-598.
%F a(0)=2, a(1)=11, a(2)=212; thereafter a(n)=the concatenation of a(n-2), a(n-3), and a(n-2). [clarified by _Harvey P. Dale_, May 24 2018]
%t nxt[{a_,b_,c_}]:={b,c,FromDigits[Join[Flatten[IntegerDigits/@{b,a,b}]]]}; NestList[nxt,{2,11,212},10][[All,1]] (* _Harvey P. Dale_, May 24 2018 *)
%Y Cf. A003842, A214216.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Jul 10 2012