OFFSET
1,1
COMMENTS
Complementing the first and last digits of each term gives (essentially) A214216.
LINKS
Kalle Saari, Periods of factors of the Fibonacci word, Department of Mathematics and Turku Centre for Computer Science, University of Turku, 2001 4 Turku, Finland.
Kalle Saari, Periods of factors of the Fibonacci word, in Proceedings of the Sixth International Conference on Words (WORDS’07). Institut de Mathématiques de Luminy (2007) 273-279.
Zhi-Xiong Wen and Zhi-Ying Wen, Some properties of the singular words of the Fibonacci word, European J. Combin. 15 (1994), 587-598.
FORMULA
a(0)=2, a(1)=11, a(2)=212; thereafter a(n)=the concatenation of a(n-2), a(n-3), and a(n-2). [clarified by Harvey P. Dale, May 24 2018]
MATHEMATICA
nxt[{a_, b_, c_}]:={b, c, FromDigits[Join[Flatten[IntegerDigits/@{b, a, b}]]]}; NestList[nxt, {2, 11, 212}, 10][[All, 1]] (* Harvey P. Dale, May 24 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 10 2012
STATUS
approved