OFFSET
0,2
COMMENTS
Also, numbers that are congruent to {0,3,7,10} mod 15. - Bruno Berselli, Jul 19 2012
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
From Bruno Berselli, Jul 19 2012: (Start)
G.f.: x*(3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (30*n+2*i^((n-1)*n)+3*(-1)^n-5)/8, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 04 2016
MAPLE
MATHEMATICA
f[n_]:=Floor[(3/2)Floor[5n/2]]; t=Table[f[n], {n, 0, 70}]
PROG
From Bruno Berselli, Jul 19 2012: (Start)
(Magma) [n: n in [0..190] | n mod 15 in [0, 3, 7, 10]];
(Maxima) makelist((30*n+2*%i^((n-1)*n)+3*(-1)^n-5)/8, n, 0, 51);
(PARI) concat(0, Vec((3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2))+O(x^51))) (End)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 18 2012
STATUS
approved