login
A214058
Least m>0 such that gcd(3^n+m,2^n-m) > 1.
1
2, 4, 1, 16, 2, 3, 3, 1, 1, 10, 3, 22, 2, 4, 1, 1675, 2, 1, 3, 1, 1, 10, 3, 1, 2, 4, 1, 81, 2, 12, 3, 788, 1, 10, 3, 75, 2, 4, 1, 1, 2, 12, 3, 1, 1, 10, 3, 192, 2, 4, 1, 16, 2, 1, 3, 1, 1, 10, 3, 1, 2, 4, 1, 361, 2, 3, 3, 1, 1, 10, 3, 1, 1, 4, 1, 81, 2, 12, 3, 1042, 1, 10, 3, 1, 2
OFFSET
1,1
LINKS
EXAMPLE
gcd(9+1,4-1) = gcd(9+2,4-2) = gcd(9+3, 4-3) = 1 and gcd(9+4, 4-4) > 1, so that a(2) = 4.
MATHEMATICA
b[n_] := 3^n; c[n_] := 2^n; Table[m = 1; While[GCD[b[n] + m, c[n] - m] == 1, m++]; m, {n, 150}]
CROSSREFS
Cf. A214056.
Sequence in context: A172385 A081538 A224783 * A173820 A030043 A045497
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 24 2012
STATUS
approved