1,2

Clark Kimberling, Table of n, a(n) for n = 1..1000

gcd(82+1,9-1) = 1 and gcd(82+2,9-2) = 7, so that a(9) = 2.

b[n_] := n^2 + 1; c[n_] := n; Table[m = 1; While[GCD[b[n] + m, c[n] - m] == 1, m++]; m, {n, 150}]

Sequence in context: A336364 A294223 A238122 * A195508 A049274 A339470

Adjacent sequences: A214056 A214057 A214058 * A214060 A214061 A214062

nonn,easy

Clark Kimberling, Jul 24 2012

approved