The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213879 Positive palindromes that are not the sum of two positive palindromes. 6
 1, 111, 131, 141, 151, 161, 171, 181, 191, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10301, 10401, 10501, 10601, 10701, 10801, 10901, 11111, 11211, 11311, 11411, 11511, 11611, 11711, 11811, 11911, 12021, 12121, 12321, 12421, 12521, 12621, 12721, 12821 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS These numbers do not occur in A035137. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..2151 (first 111 terms from N. J. A. Sloane) Eric Weisstein's World of Mathematics, Palindromic Number FORMULA ({ A002113 } intersect { A319477 }) minus { 0 }. - Alois P. Heinz, Sep 19 2018 EXAMPLE 22 is not a member because 22 = 11 + 11. MAPLE # From N. J. A. Sloane, Sep 09 2015: bP is a list of the palindromes a:={}; M:=400; for n from 3 to M do p:=bP[n]; # is p a sum of two palindromes? sw:=-1; for i from 2 to n-1 do j:=p-bP[i]; if digrev(j)=j then sw:=1; break; fi; od; if sw<0 then a:={op(a), p}; fi; od: b:=sort(convert(a, list)); MATHEMATICA lst1 = {}; lst2 = {}; r = 12821; Do[If[FromDigits@Reverse@IntegerDigits[n] == n, AppendTo[lst1, n]], {n, r}]; l = Length[lst1]; Do[s = lst1[[i]] + lst1[[j]]; AppendTo[lst2, s], {i, l - 1}, {j, i}]; Complement[lst1, lst2] palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t1 = Select[Range[12900], palQ[#] &]; Complement[t1, Union[Flatten[Table[i + j, {i, t1}, {j, t1}]]]] (* Jayanta Basu, Jun 15 2013 *) CROSSREFS Cf. A002113, A014092, A035137, A083142, A088601, A260255, A319477. Sequence in context: A070798 A235039 A279423 * A095613 A108721 A084325 Adjacent sequences:  A213876 A213877 A213878 * A213880 A213881 A213882 KEYWORD base,nonn AUTHOR Arkadiusz Wesolowski, Jun 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 23:50 EST 2022. Contains 350504 sequences. (Running on oeis4.)