login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{1<=i<j<k<=n} P(i)*P(j)*P(k), where P(m) is the k-th Pell number A000129(m).
2

%I #16 Dec 25 2023 18:08:21

%S 0,0,0,10,214,3491,52001,748788,10636260,150248190,2117562834,

%T 29816257390,419662506490,5905775317025,83104503504515,

%U 1169392060102440,16454728773220584,231536384221100316,3257968708458764196,45843125116860034258,645061876629223784830,9076710308820189950975

%N a(n) = Sum_{1<=i<j<k<=n} P(i)*P(j)*P(k), where P(m) is the k-th Pell number A000129(m).

%H Alois P. Heinz, <a href="/A213788/b213788.txt">Table of n, a(n) for n = 0..275</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (21,-98,-34,616,-532,-62,98,-7,-1).

%F G.f.: (x^4+2*x^3-23*x^2+4*x+10)*x^3 / ((x-1) * (x^2+14*x-1) * (x^2-2*x-1) * (x^2+2*x-1) * (x^2-6*x+1)). - _Alois P. Heinz_, Jun 20 2012

%p a:= n-> (Matrix(9, (i, j)-> `if`(i=j-1, 1, `if`(i=9,

%p [-1, -7, 98, -62, -532, 616, -34, -98, 21][j], 0)))^(n+3).

%p <<5, -1, 0, 0, 0, 0, 10, 214, 3491>>)[1, 1]:

%p seq (a(n), n=0..30); # _Alois P. Heinz_, Jun 20 2012

%t LinearRecurrence[{21, -98, -34, 616, -532, -62, 98, -7, -1}, {0, 0, 0, 10, 214, 3491, 52001, 748788, 10636260}, 30] (* _Jean-François Alcover_, Feb 17 2016 *)

%o (PARI) concat(vector(3), Vec((x^4+2*x^3-23*x^2+4*x+10)*x^3 / ((x-1) * (x^2+14*x-1) * (x^2-2*x-1) * (x^2+2*x-1) * (x^2-6*x+1)) + O(x^30))) \\ _Colin Barker_, Feb 17 2016

%Y Cf. A000129, A213785.

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_, Jun 20 2012