login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213788
a(n) = Sum_{1<=i<j<k<=n} P(i)*P(j)*P(k), where P(m) is the k-th Pell number A000129(m).
2
0, 0, 0, 10, 214, 3491, 52001, 748788, 10636260, 150248190, 2117562834, 29816257390, 419662506490, 5905775317025, 83104503504515, 1169392060102440, 16454728773220584, 231536384221100316, 3257968708458764196, 45843125116860034258, 645061876629223784830, 9076710308820189950975
OFFSET
0,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,-98,-34,616,-532,-62,98,-7,-1).
FORMULA
G.f.: (x^4+2*x^3-23*x^2+4*x+10)*x^3 / ((x-1) * (x^2+14*x-1) * (x^2-2*x-1) * (x^2+2*x-1) * (x^2-6*x+1)). - Alois P. Heinz, Jun 20 2012
MAPLE
a:= n-> (Matrix(9, (i, j)-> `if`(i=j-1, 1, `if`(i=9,
[-1, -7, 98, -62, -532, 616, -34, -98, 21][j], 0)))^(n+3).
<<5, -1, 0, 0, 0, 0, 10, 214, 3491>>)[1, 1]:
seq (a(n), n=0..30); # Alois P. Heinz, Jun 20 2012
MATHEMATICA
LinearRecurrence[{21, -98, -34, 616, -532, -62, 98, -7, -1}, {0, 0, 0, 10, 214, 3491, 52001, 748788, 10636260}, 30] (* Jean-François Alcover, Feb 17 2016 *)
PROG
(PARI) concat(vector(3), Vec((x^4+2*x^3-23*x^2+4*x+10)*x^3 / ((x-1) * (x^2+14*x-1) * (x^2-2*x-1) * (x^2+2*x-1) * (x^2-6*x+1)) + O(x^30))) \\ Colin Barker, Feb 17 2016
CROSSREFS
Sequence in context: A245985 A309737 A211912 * A278125 A274763 A002967
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 20 2012
STATUS
approved